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Abstract

Theoretical study is ❑ade of electronic-rotational energy

transfer in F(2P) + H2 three-dimensional collisions, with

electronic matrix elements from DIM theory. The quantum

close-coupled equations are integrated via the R-matrix

propagation method. Inelastic quenching probabilities are

emphasized, with and without simulated open reaction channe].s.

Interweaving patterns in the transition probability Ior even

and odd nuclear parity vs. J (total angular momentum quantum

number) are analyzed in terms of avoided crossing structure

in the electrotational energy correlation diagrams. Localized

regions where electronic quenching is dominant

In the correlation diagrams, and are confirm(d

calculations which neglect Interchannel mixing

regions of the atom-molecule separation. Open

channels are found to have little influence on

are identified

in separate

in local

reaction

the quenching

probabilities in these low energy calculations.
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I. Introduction

The theoretical study of electronic-nuclear energy transfer

in molecular collisions has recently intensified.1’2 Quantum

collinear studies of X(2P) + H2 (X = halogen) nonreactive

collisions,3 Ba + N20 or H+ + H2 4,5
collinear reactive collisions,

and three-dimensional C+(2P) + H2
6

nonreactive collisions

(following a formulation emphasizing H+ + F atomic collisions)

have recently appeared. In addition, coplana.r8and three-

dimensionalg’10 studies of nonreactive F(2P) + H2 collisions

which employ the quantum close-coupling method have emphasized

the realtive ease of electronic-rotational energy transfer

In the near-resonant quenching process: F(2P~) + H2(j=O) +

2
+ F( p3/2) + H2(j=2). Semiclassical studies of F(2P3) + H2

+ FH + H reactive collisions11,12 have suggested the importance

of this channel at higher collision eriergies.

In this study, probabilities and cross sections for

electronic-rotational energy tannsfer in inelastic F(2P4)

+ H2(j=O) collisions are calculated through integration of

the quantum mechanical close-coupling equations. Competition

between the near-resonant and nonresonant processes (leading

to F(2P3,2)+’H2(j=2) or F(2p3,~+H2(j=O), respectively) is

studied as a function of both J (total angular momentum

quantum number) and Etr (reactant translational energy). All

electronic information concerning the ground and excited

states is obtained from Diatomics-in-Molecules (I)IM)theory.13-15

Utilization of DIM electronic-nucleal basis functions,

which serve as an ~xpansion basis for the scattering wavefunction,\

has been discussed previously,16,17
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In Sec. 11A,

functions through

the generation of electrotational basis

angular ❑omentum coupling of products of

DIM electronic functions and nuclear tumbling-bending

functions is reviewed. The matrix representation of the

Hamiltonian in this basis is discussed, (The total

Hamiltonian is partitioned into a sum of translation,
AAA A

electronic, and rotational components H = Ts + Hel + Trot,

where the electronic Harniltonianis further decomposed into

the sum of spin-free and atomic spin-orbit interaction terms,
A A~F A A
H =H el + Hso.el In the electrotational basis, H~o is

diagonal.) Natural collision coordinates18,19 are defined

to specify the orientation, size, and shape of the nuclear

triangle. Then, in Sec. IIB, use of the recently developed

R-matrix propagation method20a for numerical integration of

close-coupled equations for the translational scattering

wavefunctions is reviewed. Boundary conditions on the

scattering wavefunction are discussed in Sec. IIC. Boundary

conditions, in terms of the S-matrix, are described for both

“pure” inelastic collisions and for inelastic collisions in

the presence of open reaction channels which are simulated

by detailed quantum transition state theory21 (DQTST).

The energy and angular momentum dependence of the near-

resonant and nonresonant quenching probabilities is illustrated

In Sec. 111A, while the energy dependence of the yields and

cross sections are shown in Sec. IIIB. Then, in Sec. IIIC,

Interesting alterations in the resonant transition probability
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accompanying variations in J are related to avoided crossing

structure in electrotational adiabatic energy correlation

diagrams. In Sec. IIID, quantitative examination is made

the localized region (of atom-molecule separations) which

dominates the electronic quenching process. Finally, tlie

first quantum results on the influence of reaction channels

on the low energy nonreactive quenching process are examined

In Sec. IIID. Further discussion and conclusions are

presented in Sec. IV,
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II. UE!2!

A. Electrotational Basis

1. Coordinates

Ni~tural collision coordinates will be used to

specify the size and shape of the instantaneous three-body

triangle.18’19 The triangle orientation relative to nonrotating

axes is specified by three Euler angles e, $, x. Fig. 1 shows

the collinear F + H2 coordinate plane, where Z and z are the

components of R and ; on the (body-fixed) rotating z-axis. K

and ; are scaled atom-molecule and molecular vectors, respectively:

fi= fi(unscaled)/(0.725) and ~ = ~ (unscaled)(O.725). The scale

factor is chosen so that within the scaled coordinate system,

the nuclear reduced mass is the same for translation, vibration

and rotation: 2p/& = 128.405a~2eV-1. The collinear space is

divided into polar and Cartesian regions in Fig. 1. The

natural coordinate s is the arc length measured along the

reference curve (RC), with s = O on the reactant-product match

surface M, and s + -CDas the F + H2 distance increases. The

two other natural coordinates, p and y are the polar coordinates

of a point in a constant s plane. The three natural coordinates

s, p, and y thus define nuclear translational, vibrational, and

bending motions within the rotating coordinate system. The

electronic coordinates are also assumed to be specified within

the rotating coordinate system.

The orientation of the body-fixed z-axis relative to the

nuclear triangle Is determined by a switching angle a(s). In

these calculations,,u is chosen so that the body-fixed z-axis
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coincides with the k direction in the Cartesian region (s < s )

of Fig. 1. The switching angle explicitly enters the rotational

kinetic energy later in Eq. 8 through the function f(s), where

f = cos (a-$), with angle $ defined in Fig. 1.

Since our emphasis is on low energy electronic-rotatj.onal

energy transfer, vibrational nonadiabatic effects are not

considered. The vibrational coordinate p in Fig. 1 was adjusted

(at each s) to lie on the reaction path (RP) on the ground

electronic state adiabatic potential surface.

2. Electronic Matrix Elements

All input from the electronic problem is provided by DIM

theory. Following Miller and Wyatt,17 a matrix representation
ASF

of Hel is constructed in the electronic spin-coupling scheme

(S S )S, where Sj(SF ‘A)SFA FA B is the atomic spin on atom j. A

2minimal basis containing six P F-atom states, and two 2s

states on each hydrogen atom are used to construct 24 atomic

product functions, in terms of which the 24 spin coupled

polyatomic basis functions are constructed. The axis of

qunntization for electronic angular momentum is along the body-

fixed z-axis. The nondiagoual matrix g~~ (24 x 24) has matrix

elements composed of linear combinations of tilelZ and 3Z H2

diatomic potentials, and the lZ, %, ln, 3and n HF diatomic

potentials. All parameters in these potential curves are

tabulated by Tully13 (Table V, Calculation 11).

Before injecting this electronic information into the

electrotational basis functions, the electronic angular momentum
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is recoupled according to the scheme: (LFsF)JF(sAsB)sH(JFsH)Je.

The total electronic angular momentum component Ke is again

defined along the z-axis. Counting Ke values, there are 24

values of the electronic index u, which combines the coupling

scheme index with the appropriate Ke value (see Table I in

Ref. 17). For each value of s, p, and y, the electronic

matrix elements are denoted Ha,o (s,P,Y). In this representation,

the atomic spin-orbit interaction l~F-$? is diagonal. The

appropriate spin-orbit energy is added to each diagonal element

ASFafter converting the matrix representing Hel into the new

coupling scheme: ge@bPw = @s,P,y)~++ I-l-l.where T
=

is a

complex 24 x 24 matrix.

As functions of y, the electronic matrix elements show

tensor character in that the angular dependence is like an

associated Legendre polynomial:

l-l&#@ - ~>

Ikc-K: l(@&J).

(1)

Even or odd reflection symmetry about y = Tr/2is determined—

by whether S; - SH + K: - Ke is even or odd, respectively. In

calculating angular averages, the follo~ing expansion is

useful (only even or odd symmetry Legendre polynomials are—

included):
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where the minimum value of the expansion index is

In practice, a three term expansion of each electronic

element is used. The expansion coefficients are found

(3)

ma.t.rix

by

requiring that the sum on the right side of Eq. 2 exactly

reproduce the value of Ho,a at three angles. (Fcr AKe = O,

the angles y = O, m/4, and Tr/2were used, and for AKe # O,

the angles y = n/8, Tr/4,and 3n/8 were used).

3. Electronuclear Basis

A convenient basis for expansion of the scattering wave-

function are the combined electronic-rotational functions aefined

by Miller and Wyatt.17 These functions are sums of products

of DIM electronic functions {$~lh~;u = 1,2””24 and nuclear
LnKn

rotational functi~ns {N~K(O$x)$.g (Y)], where N~K
i

is a normalized

Ln nsymmetric top function, and $jL is a free internal rotor

function.17,23 The electronic and rotational angular momenta

are coupled according to the scheme labeled by indices a,

a= (LFsF)JF(sAsB)sH(JFsH)Je(~j)Ln(LnJe)J f-)

~—---~ +
electronic nuclear total

The electr~tational functi~ns are then
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where <J1J2K1K21JK> is a Clebsch-Gordan coefficient. These

functions are orthonormal when integrated over all electronic

and rotational coordinates,
<nJ?d J?h
~ mao = sun,.

A
4. Representation of Hel in Electrotational Basis

In the close coupling method, electronic-rotational

channels (labeled by the index u) are coupled through matrix
JM A

elements <$latlHell~~M>. W}en Eq. 5 for ~~hfor ~~?~is used,

the required matrix elements involve sums of angular integrals of

DIMl:ell~:lM>= Ha,a.
the electronic matrix elements, <@u, When

dq. 2 Is used for the angular dependence of the electronic

matrix elements, we obtain the matrix elements (integration

over 6, $, x, Y) and e has been completed

(’CU!,1m}=x d’ @~P~ S;d’q, (6)

Kek;A
where the F-coefficients are completely independent of geometry.

They are sums of products of Clebsch-Gordan coefficients,

%<L;OIGIL.K*><qo,k’-~ldy%?’}sk’Sk;
b,K;l~;re-k’’qlp;~fi),(7)

ti<~ I

where the phase factor S~n arises tn the definition of the

24 “
spherical Larmonics, ‘Kn = (-l)Kn, Kn < 0 and SKn = +1, Kn > 0.

The integral over the product of three Legendre polynomials
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may be evaluated in terms of Clebsch-Gordan coefficients.
24

In our computations, the F-coefficients are computed (and

stored on the disk) at the first step of integration of the

close-coupled scattering equations.

used at each step of the iiitegration

A

The same set of F’s are

process.

5. Representation of Hrot in Electrotational Basis

The representation of the rotational kinetic energy operator
A
Trot (which includes contributions from overall triangle

tumbling, and from internal bending) in the electrotational

basis has been derived by h!illerand Wyatt.
17 To a good

approximation the rotational kinetic energy operator is

diagonal in this basis, with eigenvalues given by

where (see Fig. 1 for definitions of R
P

and rp):

The function f(s) controls the orientation of the rotating

z-axis with respect tc the nuclear framework. As S + -=,

f+ -1 and the rotational eigenvalues correctly become

(lo)
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where z is the scaled H2 intermolecular separation, and

Z=(Rp2-r2$ ~ ) is the scaled atom-molecule separation.

For this chotce for f, the asymptotic form for the rotational

energy is reached just after the Cartesian region of Fig. 1

Is entered (starting from s = O). The rotational eigenvalues

at the s = O limit become (with f = O and R = rp)
r

(11)

6. Expansion of Scattering Wavefunction

The scattering wavefunction at total angular momerltumJ and

input channel &(defined earlier in Eq. 4) may be expanded in

the electrotational basis,

<J
where the

1
~T~Id aretranslational wavefunctions. In addition,

%
is a scale factor which is chosen to simplify the form of the

close-coupled equations for the translational wavefunctions, we

define
h

to be (RP2 - f2rp2)-3, which becomes R-1 at large

atom-molecule separations. The expansion in Eq, 12 does not

include vibrational states, because our emphasis is on electronic-

rotational energy transfer In low energy atom-diatom collisions.

The theory could easily be extended to include vibrational effects,

at the expense of greater computer time. The close-coupled

equations for the trarlslationalwavefunctions are derived by

requiring
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(n~(;-E[wdmj =o, d’’,,2...N, (,3,

The electrotational channels are coupled through the interaction

J
~“lfiel+ ~rotl~~~>. The❑atrix, which has elements Baa, = <O

close-coupled equations are then

($- ~) <~i~)=f 13~L,,hJ7j:L&,14)
or+
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B. Solutlcn of the Close-Coupled Equations

The close coupled equations for translational motion are

solved by the R-matrix propagation technique described by Light

20a
and Walker. The R-matrix defines the relationship between the

translational functions and their derivatives at both ends of

the integration range, so that

where s is the scattering coordinate and SC

(15)

and sf specify its

initial and final values. The R-matrix is determined by dividing

configuration space into sectors each spanning a small range

of the scattering coordinate. The size of each sector is chosen

small enough that the coupling matrix In Eq. 14 may be accurately

regarded as constnnt over the entire sector width. The coupling

matrix is then diagonalized and the wavefunction expansion Is

transformed to the locally uncoupled representation. In this

representation, a local sector R-matrix (satisfying boundary

relationships as In Eq. 15, but spanning only the local sector)

is determined analytically. The sector R-matrices and the

appropriate sector to

asserfibledrecursi~ely

Zvijac and Light.20b

sector basis transformation matrices are

using the formulns originally derived by

Tho R-matrix propagation method has two distinct advantages

for this problem. The linear independence of translational

solutions to the coupled equations are unaffected by the presence
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of any number of closed channels, no matter how deeply buried.

All channels which correlate to excited electronic species of

F + H2(3Z) are very deeply buried; in this method, these channels

cause no difficulty whatsoever. The R-matrix propagation

method is also desirable for this problem because the evaluation

of the coupling potential is very time-consuming. Because the

step size algorithm for the R-matrix propagation method is the

20C
same as that used in the Magnus propagation method, a smaller

number of potential evaluations are required as compared to

methods which integrate the translational functions and their

derivatives directly. Furthermore, because the step size

algorithm is independent of the scattering energy, the potential

evaluation is performed only once in each sector for the initial

scattering energy. Consequently, we obtain a very significant

Improvement in the time l’equiredto perform a scattering cal-

culation after the first energy. For example, most calculations

performed here required approximately six minutes of CDC6600

time for the first scattering energy at each J, and only ten

seconds per energy thereafter.

The R-matrix propagation scheme operates differently In the

two different F + H2 scattering problems considered here. In

the first model, we consider only inelastic scattering events,

and the scattering wavefunction is forced to obey regular

boundary conditions near the orig~.n(s=0), For this reason,

only the subset of R-matrix propagation equations necessary to

asymptotically determine the R4 block (an N x N matrix, for N
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channels) of the R-matrix are involved. Consequently, the

inelastic scattering calculation requires only half the effort

necessary to determine the full R-matrix. In the second model,

the detailed quantum transition state theory (DQTST) of Light

and Siczek21 is employed to investigate the relative importance

of reactive scattering vents from the two possible initial

spin orbit levels of fluorine. In this case, a transition

state theory assumption is made on the inner R-matrix boundary

(near s=O), that all flux locally penetrating this surface

continues on towards the asymptotic product region of configuration

space with no back reflection. In this case, regular boundary

conditions are not assumed on the transition state surface

(TSS) and the full R-matrix (a 2N x 2N matrix) must be computed.

The boundary

treated here

section.

conditions employed in the two scattering models

are discussed in more detail in the following
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c. Bounaary Conditions

Boundary conditions for the F + H2 inelastic scattering

problem are applied in the normal fashion. At large atom-

molecule separations, the scattering wavefunction assumes

the asymptotic form

An equation similar to Eq. 16 also holds for the derivative of

the wavefunction. Both equations are cast in matrix form and

are combined with the equation for the R4 block of the R-matrix,

gJ(sf)= (g4)”(~J&f)),to give a matrix equation for the

scattering matrix S in terms of the R-matrix. We obtain

(17)

(18)

where k_ is a diagonal matrix of the asymptotic channel

momenta and O_ (~~) is the diagonal matrix

channel translational functions (and their

that

of asymptotic

derivatives), so
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where h~) is a spherical Ricatti-Hankel function. For closed

channels, the appropriate Hankel functions of imaginary

argument are used. All features of the collision process are

Then determined from the S-matrix.

When the DQTST model is applied to the scattering process

in order to estimate the relative importance of renctive

scattering from each initial spin orbit state of fluorine,

the boundary conditions applied to the R-matrix are slightly

different. Asymptotically, at large F to H2 distances, the

wavefunction assumes the same form as in Eq. 16. However, on

tl TSS, boundary conditions appropriate to DQTST are applied.

The transition state surface is placed near s = O, and all flux

passing through this surface is assumed to be outgoing towards

the H + HF products. The scattering wavefunction beyond the

TSS assumes the form

(20)
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-JMwhere the internal states O
a’ are the locally adiabatic states

on the TSS and the channel momenta ~
a’ are those appropriate

to the local channel energies on the TSS. This choice of

boundary conditions corresponds to the case (B) discussed by

Light and Siczek?l The DQTST boundary conditior,slead to an

equation for the (new) S-matrix similar to that of Eq. (17)

and Eq. (18), e~cept that now we have

(21)

(22)
●

As appropriate for DQTST, no particular relevance is

attributed to individual values of the “reactive” S-matrix

elements determined by this method. The DQTST approximation

seeks only to determine the total flux through the transition

state surface In terms of Lhe total reaction probability

from a specific initial state of reactants. This total reaction

probability is

N

l=

P

J-

0/,feadwz

= f ,y-+,a

(23)

0(’=1
where the sum runs over all states locally open on the TSS.
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III. Close-Coupling Results

A. Transition Probabilities

Through use of the R-matrix propagation technique,

we have integrated systems of close-coupled equations to

obtain transition probabilities as functioas Of E and J for

the near-resonant and nonresonant quenching of electronically

excited I’in collisions with H2:

F(2P3,2)+H2(j=O) +
{

F(2P~) + H2(j=2) near-resonant

F(2P4) + H2(j=O) non-resonant

Results will first be consj.deredfor purely nonreactive processes

3on a DIM electronic basis which excludes z H2 contributions.

Tke res’lltantsurfaces at small R are repulsive; the lowest

adiabatic surface does not decline into an exoergic FH + H

exit valley. Later, in Section IIIE, DQTST results will be

described for the quenching process in the presence of simulated

reaction channels.

The results in this section were obtained with electrotational

bases containing j=O and 2 H2 rotational states, JF = ~ and ~

electronic states, and all nuclear rotational states labeled

by t and Ln which are consistent with havi~g a specified value

of J. For J = ~, this involves 8 channels for even or odd nuclear

parity, which is determined by the values of k and Ln. The

number of states gradually increases with increasing J, and

includes 18 states when J ? 7/2.
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In Fig. 2, resonant transition probabilities vs. J are

shown for

0.035 eV.

(0.045 eV

channel.

two different translational energies, 0.012 eV and

The upper energy is just beiow the threshold

translational energy) lor t!~eF(2P~) + H2(j=2)

These transition probabilities are sums over probabilities

into all finai i’ and L: channels consistent with the specified
LA

total value of J:

(1)

where J* = ~ and j’ = 2. Transition probabilities are shown

for both even and odd nuclear parity. The nuclear parity (t)

is determined by whether j + t is an even or odd integer,

respectively. In this case, since j=O, the value of k

completely determines the nuclear parity. (For F + H2 _nonreactive

collisions, the four symmetry types determined by even or odd—

values of j and j + ~ decouple the scattering problem into

four noninteracting categories.) Fig. 2a shows

J(+)
interweavin~ of Pres and P~~~) as they decline

at J = ~, followed by an abrupt change near J =

a very interesting

from the values

23/2. For

J > 33/2, the transition probabilities then rupidly decrease

in magnitude. A similar qualitative pattern is showriat

higher energy in Fig. 2b, with the alteration in the regular

pattern at low J now occurring near J = 31/2. The interweaving

‘f ‘~~~) and pJ(-)res and the alteration in this pattern at higher
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J, are correlated with avoided crossing structure in the elect-

rotational energy correlation diagrams (see Sec. IIIC). A

Elmllar pattern with increasing J was obtained by Chu and

Dalgarno6 (see the partial cross sections in their Fig. 2) in

close-coupling studies of C+(%Pa) + H2(j=O) + C+(2P3/2) + H2(j=O)

collisions at Etr = 0.0275eV.

Finally, Fig. 3 shows the dependence upon energy of tne

resonant and nonresonant transition probabilities for the

lowest partial wave, J = ~. Tne rapid growth of the resonant

probability just above threshold should bc noted.

B. Cross Sections

For initial and final channels that involve % H2 (SH =s~=o,

so that JF = Je and J; = J:), the degeneracy averaged cross

section leading from an input channel JFj to the final channel

J$j’ is (cross section formulas for F + H2 collisions are

discussed by Rebentrost and LesterlO):

where the yield is

(2)

(3)
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In Fig. 4, the yield and cross sections for the resonant and

nonresonant quenching processes are shown as functions of

translational energy. Except for Etr ~ 0.002 eV, the resonant

process dominates the nonresonant one by a factor of about 10.

The sudden increase in Ures for Etr ~ 0.002 eV is due to the

k-2JFj factor in Eq. 2 multiplying the yield, while the yield

i~ increasing roughly as kJ ~. This type of low energy
F

behavior was not reported by Rebentrost and Lester,10 whose

long range potential is probably considerably different from

the DIM behavior. The sensitivity of these results to alterations

in the long range F - H2 potential needs to be investigated.
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c. Adiabatic Energy Correlation Diagrams

Much of the structure in the dependence of the resonant

transition probabilities P~~~) on J, as

be at least qualitatively understood by

rotational adiabatic energy correlation

the local coupling matrix at the center

(See Sec. IIB), we obtain the perturbed

shown in Fig. 2, can

considering the elect-

diagrams. By diagonalizing

of each R-matrix sector

stationary sta’e energies

f
~~(s) = 22 ca(s) as a function of the reaction coordinate s.

In Fig. 5a the energy correlation diagram is shown for the

J= 0.5 total angular momentum state. The electrotational

Dasis used to construct Fig. 5a includes all chailnelsasymptotically

correlating to F + H2 states with JF = 1.5, j = 0,2,4 and JF = 0.5,

s = 0,2. The asymptotic splitting between the final states

JF, j = 0.5,0 ar,d1.5,2 is too small to be seen in the second

lowest energy grouping in this figure. Fig. 5a shows clearly

the repulsive nature of the F + H2 interaction at small values

of s when no 3Z states of H2 are included in the electrotational

basis. A more detailed view of the energy correlation diagram

is presented in Fig. 5b, which shows only the large s ~ehavior

of those states directly participating in the resonant quenching

process. At the largest F - H2 separation (s = -6.6 bohrs) the

splitting of the (0.5,0) and (1.5,2) states is now evident. It

is also seen that two of the four (1.5,2) states experience a

repulsive interaction much like the (0.5,0) state, while the

other two statesexperience an attractive long ~’angeinteraction.

It may also be seen that the (0.5,0) diabatic basis state crosses
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under the repulsive (1.5,2) states between s = -5 bohrs and

s = -6 bohrs. The coupling between these channels near these

avoided crossings is responsible for the electronic to rotational

energy quenching process.

The interweaving of the resonant transition probabilities

as a function of J (seen in Figs. 2a and 2bJ and referred to

in Sec. 111A) is consistent with the avoided crossing structure

of the higher J energy correlation diagrams. In Figs. 6a-f

we show a sequence of correlation diaGrams for J = 6.5, 7.5,

and 8.5 for both eve? and odd nuclear parity states. Once

again we concentrate on the large s portion of the diagrams

near the (0.5,0) and (1.5,2) avoided crossings. For the larger

J states, there are ten channels correlating to the ,1.5,2)

asymptotic level, corresponding to all different possibilities

for the values of i and Ln. Five of the ten channels experience

a repulsive long range interaction, and the remaining five

experience an attractive long range interaction. It may also

be seen that the ten channels in the (1.5,2) grouping fall into

four separate manifolds, split asymptotically only by the

centrifugal potential ‘(L-+1)/R2. As in Fig. 5, we see the

effect of the (0.5,0) diabatic state crossing under the five

repulsive channels emanating from the (1,5,2) grolping. Channel

coupling at these crossings ~ccounts for the near resonant

electronic to rotational energy transfer process. Inspection

of Fig. 6 indicates that the intemeaved patt~rn of resonant

transition probabilities is always characterized by collisions
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in which the initial orbital angular momentum & of the

F(2P4) + M2(j=O) pair is given by k = J - 0.5. If we then

recall that all the positive nuclear parity collisions involve

even orbital angular momenta for this transition, it may be

seen that the enhanced transition probabilities occur at

alternate total angular momentum states for a given nuclear

parity.

It is also not surprising that we find relatively large

quenching probabilities in those channels which attempt to

cross the upper electronic state nearest the classical turning

point. When a surface crossing occurs extremely near the classical

turning point, we find the enhanced transition probabilities

seen at larger J values in Fig. 2a (J = 11.5,12.5) and in Fig.

Fig. 2b (J = 16.5 to 21.5). As the value of J increases even

further, the series of crossing poin:s (at fixed total energy)

moves inside the classically forbidden region, accounting for

the rapid dropping off of the transition probability at higher

J’s,
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D. ~OCatiOn of Electronic Transitions.

In order to confirm the region in s where the near-

resonant quenching transition is concentrated, we repeated

close-coupling calculations for J = 4 (even nuclear parity)

with the nonadiabatic coupling neglected in the preselected

interval from smin to smax. The same coupling matrix BJ in Eq. 14=

was used to compute

in each s-sector of

these calculations,

($%(i-l,i)in Eq. 34

local adiabatic eigenvalues and eigenvectors

the R-matrix propagation scheme. But, in

the sector-to-sector overlap matrix

of Ref. 20a)was reset to the unit matrix

for all sector transformations in the specified interval.

Fig. 7 shows the energy dependence of the resonant transition

probability for both the “exact” and modified calculations.

When examining the figure, it is helpful to refer back to the

J = $ adiabatic energy correlation diagram in Fig. 5. From

Fig. 7, it is apparent that the quenching transition does not

arise primarily h the region where s > -4.6a. (this corresponds

to unscaled atom-molecule separations (R(unscaled)f 6.6 so).

However, when the overlap matrices are unitized over the interval

from -4.8 to -6.4 ao, the resonant transition probabilit!~is

only 1/5 of the exact value. Examination af Fig. 5 shows that

this is the same interval where there are avoided crossings

betwqen the j=EO,JF= ~ input channel and the upper two channels

correlating with j=2,
3

‘F = ~’ Hence the electronic transition

region is fairly localiz~d cround this large R avoided crossing

region.
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E. Reactive Modeling

Reaction channels were simulated for J = t by applying

outgoing boundary conditions (in the +s “product” direction)

near s = -0.8 ao. An open channel outgoing wave boundary condition

using the local (rather than asymptotic) channel energy was

applied to the lowest channel in Fig, 5a, and closed channel

boundary conditions were applied to all other channels at,
-\

this s-value.“ The results to be describeclwere not sensitive

to the actual position where the outgoing boundary conditions

were applied. For the F + H2 reaction, the DQTST assumption

is not entirely correct, since some flux does reflect back

from the near entrance to the product vallsy. It is likely

that the DQTST conditions applied near s = -0.8 a. lead to an

22overestimation of the reaction probability. The resonant and

nonresonant quenching probabilities, pJ(+) and p~~~~es
res were

found to agree with the previous results (obtained in the “pure”

nonreactive model) to better than 1% at all energies shown in

Fig. 3 (at the highest energies studied, P;:;;tive m 0.1 x

P:$::es). The low energy quenching process is not perturbed

by opening the reaction channel. However, this result may

certainly change as the system energy increases (thereaction

probability from the excited ziectronic channel increases by

a factor of about 200 over the energy range studied). The

DQTST simulation was not studied at higher E, or for J > ~.
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It Is also likely that the total reaction probability

from the JF= 0.5, j = O initial state will increase significantly,

when calculations are performed including 3Z states of ~ in

the electrotational basis. As we have seen, this

only the subset of states in the lower electronic

experiencing a repulsive long range interaction.

state “crosses”

manifold

At the energies

studied here, these states are locally closed at the TSS used

in the DQTST calculation, and they are therefore not allowed

to carry flux across the surface, As 3X states are added to

the electrotational basis, the energy correlation diagram for

these states is likely to be lowered and a much greater to+nl

2reactivity from the PA initial state of fluorine may be ~btier~ed.

IV. Summary and Conclusions

Electronic-rotational energy transfer has been studied

in low energy F(2P) + H2 three-dimensional collisions through

use of the R-matrix propagation method to integrate the quantum

mechanical close-coupling equations. The electrotational basis

functions used to expand the scattering wavefunction are sums

of products of DIM electronic functions and nuclear rotational

functions. Transition probabilities, yields, and CISOSSsections

were presented for the inelastic quenching of electronically

excited F atoms, with and without the presence of simulated

reaction channels (introduced via DQTST), In the quenching

process F(2Pb) + H2(j=O) + F(2p3/2) + H2(j’), near-resonant
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(j’=2) collisions highly dominate over non-resonant (j’=0)

ones. The interesting interweaving of resonant transition

probabilities for even and odd nuclear parity as the total

angular mGmentum increases was related to the distance and

energy depend~-,-eof avoided crossing structure in adiabatic

electrotational energy correlation diagrams. The tendency

for quenching to occur in fairly localized regions at large

atom-molecule separations was confirmed by neglecting inter-

channel overlap in the R-matrix propagation scheme. The

resultant quenching probabilities were only about 1/5 of the

“exact” values. In addition, it was found that open reaction

channels had little effect on the low energy quenching

probabilities. Further study needs to be made of the sensitivity

of the results to the form of the long-range F-H2 potential.

In addition, the influence of open reaction channels needs to

be more accurately studied, particularly at higher energies.
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Figure Captions

Fig. 1. Collision coordinates in collinear subspace. Z and

z are the components of #land ~ on the rotating z-axis.

Point P is located by coordinates (S,P), where s is

the arc length measured along the reference curve (RC),

with s = O on the reactant-product match surface (M).

In the polar region (s > Sp), the RC is a circular arc

centered at the turning center (TC). The minimum

energy reaction path is RP. R
P’ ‘P‘

and Y are geometric

quantities which appear in the rotational momentsof

inertia. For noncollinear geometries, coordinates p

and y are used within each constant s-plane.

Fig. 2. Near-resonant transition probabilities for F(2PA) + H2(0)

2
+ F( P3,2) + H2(2) vs. J at (a) 0.012 eV and

(b) 0.035 eV. Both even (—) and odd (---) nuclear

parities are shown.

Fig. 3. Near-resonant and nonresonant quenching probabilities

}s. Etr (translational energy measured from the

F(2P*) + H2(j=O) energy), Eight electrotational

channels were included in the scattering basis at

J-*.

Fig. 4. Inelastic cross sections (ao2) and yield for near-

resonant and nonresonant F(2P ) + H2(j=O) collisions,
*

as a function of translational energy (eV).
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Fig. 5. F + H2 electrotational energy correlation diagram.

The elgenvalues of the local coupling matrix are plotted

as a function of the reaction coordinate s for total

angular momentum J = 0.5. In a, all states asymptotically

correlating to JF = 0.5, j = O, 2, 4 and JF = 1.5,

J = O, 2 are included in the basis. Note the repulsive

nature of the interaction as ]sI + O. In b, the scale

is expanded to show the avoided crossing between the

Jm = 0.5, j = O state and two of the states originating.

from the JF = 1.5, j = 2 manifold. The crossing occurs

here between s = -4.8 and -5.8 bohrs.

Fig. 6. F + H2 electrotational energy correlation diagrams.

The detailed structure of the avoided crossing region

between the JF = 0,5, j = O state and the JF = 1.5,

j = 2 states is chown. The splitting of the lower

manifold is due to the various possibilities for ~

and Ln. In a- f respectively, we show the correlation

diagram for the positive nuclear parity J = 6.5,

7.5, 8.5, and negative nuclear parity J = 6.5, 7.5,

8.5 cases. Note that the crossing points move to

higher energies and larger values of Isl as the total

angular momentum is increased. The alternating

character of the crossing points (in and out in s

and up and down In energy) correlates directly with the

interwoven structure of the resonant transition prob-

abilities of Fig. 2.
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Fig. 7. Effect of neglect of interstate mixing i]ithe interval

‘Smin’ ‘max) on the near-resonant quenching probability,

for J = ~ (even nuclear parity). The “exact” probability

curve is also shown for comparison.
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